The Scintec SLS20-A Scintillometer measures turbulence, heat flux and momentum flux by purely optical means. In combination with other meteorological sensors the system can determine latent heat flux or evaporation.

The model SLS20-A has built-in automatic beam steering which permits operation when manual beam alignment is undesirable or difficult. It may also be useful when the pointing stability of the mounting is poor.

Each SLS Series Scintillometer consists of a laser transmitter pointing at a receiver. Temperature fluctuations in the air cause variations of the light intensity captured at the receiver. The scintillometer evaluates such variations to yield turbulence information.

The line averaging over the optical path results in spatially representative data and outstanding temporal resolution – a critical edge over data collected from conventional point sensors. The scintillometer provides high sensitivity and accuracy – without mechanical flow distortion or any moving part.

The proprietary displaced-beam technique of the SLS Series Scintillometers opens up access to mechanical turbulence quantities (momentum flux, kinetic-energy dissipation rate) without need to feed in any external wind data.

Applications
- turbulence studies
- air quality and atmospheric dispersion
- spatially-averaged wind measurements
- optical propagation conditions
- defence weather
- surface energy balance
- evapotranspiration monitoring
- agrometeorology, forestry
- satellite data ground truth

Features
- heat flux, momentum flux by purely optical means
- suitable for stable and unstable conditions
- measures C_n^2, C_T^2, ℓ_0
- crosswind option available
- spatially averaging technique
- high temporal resolution
- low statistical noise
- no flow distortion
- easy installation and operation
- Signal Processing Unit performs all calculations
- 6 GB built-in data storage
- remote access
- beam-displacement calibration
- window heating

Scintec is ISO 9001 quality certified
Data output

Data output includes (but is not limited to):
- dissipation rate of turbulent kinetic energy
- sensible heat flux
- momentum flux
- Obukhov length
- path-averaged wind speed perpendicular to the beam axis (with crosswind extension)
- mean, standard deviation, minimum and maximum of intensity
- correlation coefficient of intensity
- data quality code

Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifications</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical wavelength</td>
<td>670 nm ± 10 nm</td>
<td>visible (red)</td>
</tr>
<tr>
<td>Mean output power</td>
<td>1 mW</td>
<td>laser safety class 2M (IIIa)</td>
</tr>
<tr>
<td>Beam divergence</td>
<td>3.5 x 10 mrad</td>
<td></td>
</tr>
<tr>
<td>Beam-steering scan cone diameter</td>
<td>1 degree</td>
<td></td>
</tr>
<tr>
<td>Path length</td>
<td>50 - 250 m</td>
<td>others optional</td>
</tr>
<tr>
<td>Integration time</td>
<td>1 s to 60 min</td>
<td></td>
</tr>
<tr>
<td>Supply voltage and current</td>
<td>12 V, 18 W</td>
<td>for transmitter, receiver, SPU</td>
</tr>
<tr>
<td>Data output</td>
<td>Ethernet, RS232</td>
<td>6 GB storage</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20 to +50 °C (-5 to +120 °F)</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>65 x 11 x 11 cm / 60 x 11 x 11 cm / 33 x 23 x 18 cm</td>
<td>transmitter / receiver / SPU</td>
</tr>
<tr>
<td>Weights</td>
<td>3.0 kg / 2.9 kg / 8.0 kg</td>
<td>transmitter / receiver / SPU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement ranges (1)</th>
<th>from</th>
<th>to</th>
<th>unit</th>
<th>Depends on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure constant C_n^2</td>
<td>1×10^{-16}</td>
<td>3×10^{-12}</td>
<td>m$^{-2/3}$</td>
<td>path length</td>
</tr>
<tr>
<td>Inner scale l_o</td>
<td>2</td>
<td>16</td>
<td>mm</td>
<td>path length</td>
</tr>
<tr>
<td>Structure constant C_T^2</td>
<td>1×10^{-4}</td>
<td>3</td>
<td>K2 m$^{-2/3}$</td>
<td>path length$^{(2)}$</td>
</tr>
<tr>
<td>Kinetic-energy dissipation rate ε</td>
<td>2×10^{-3}</td>
<td>1</td>
<td>m2 s$^{-1}$</td>
<td>path length$^{(2)}$</td>
</tr>
<tr>
<td>Sensible heat flux</td>
<td>2</td>
<td>600</td>
<td>W m$^{-2}$</td>
<td>path length and height, Obukhov length$^{(2)}$</td>
</tr>
<tr>
<td>Momentum flux</td>
<td>-4×10^{-3}</td>
<td>-1.2</td>
<td>N m$^{-2}$</td>
<td>path length and height, Obukhov length$^{(2)}$</td>
</tr>
<tr>
<td>Wind speed</td>
<td>0.01</td>
<td>10</td>
<td>m s$^{-1}$</td>
<td>with Crosswind Extension</td>
</tr>
</tbody>
</table>

1) Typical values for path 100 m long and 2 m high; 2) Values for normal temperature and pressure

Scintec AG
Willhelm-Maybach-Str. 14
72108 Rottenburg
Germany
Tel. +49 7472 98643-0
Fax +49 7472 9808714
info@scintec.com

Scintec Corporation
1730 38th Street, Boulder,
Colorado 80301
USA
Tel. +1 303 666-7000
Tel. +1 303-666-8803
ussales@scintec.com

Scintec is ISO 9001 quality certified